Solving Equations in Free Lattices

Ralph Freese (joint work with Ross Willard) University of Hawaii, Honolulu USA

Let S be a finite set of lattice equations in the variables $\{x_1, \ldots, x_k\}$. A solution of S in a free lattice $\mathbf{FL}(X)$ is a k-tuple (a_1, \ldots, a_k) of elements of $\mathbf{FL}(X)$ which satisfies the equations of S. If (a_1, \ldots, a_k) and (b_1, \ldots, b_k) are both solutions we say (a_1, \ldots, a_k) is more general than (b_1, \ldots, b_k) , and write $(a_1, \ldots, a_k) \preceq (b_1, \ldots, b_k)$, if there is an endomorphism of $\mathbf{FL}(X)$ mapping a_i to b_i for each *i*. This makes the set of all solutions of S into a quasiordered set, denoted $\mathbf{Q}(S)$.

Let \equiv be the natural equivalence relation associated with the quasiorder. Unification theory is interested the nature of $\mathbf{Q}(S)$. If every element of $\mathbf{Q}(S)/\equiv$ has some minimal element below it, then the *unification type* of S is *unitary*, *finitary*, or *infinitary* depending on the number of minimal elements. In all other cases its type is *nullary*. We show that the type of the solutions of S in $\mathbf{FL}(X)$ does not depend on |X| as long as $|X| \geq k$. We give several examples, one of which shows that there is a set of equations S which has nullary unification.